

Date: 09-11-2024

 Dept. No.

Max. : 100 Marks

Time: 09:00 am-12:00 pm

SECTION A - K1 & K2 (CO1)

Q.No	Levels	Answer ALL the Questions	(10 x 2 = 20)
1	K1	Determine a cubic equation whose roots are $-3, 1$ and 2 .	
2		Define multiple roots.	
3		State the property II of Newton's Theorem on the sums of the power of the roots.	
4		$\begin{pmatrix} 3 & 0 \\ 0 & 4 \end{pmatrix}$ Find the eigen values of	
5		Define non singular matrix.	
6	K2	State Fermat's Theorem.	
7		Write the expansion of $\log(1+x)$.	
8		Find the value of $\phi(5)$.	
9		Write the expansion of e^x and e^{-x} .	
10		State Strum's Theorem of equal roots.	

SECTION B – K3 & K4 (CO2)

		Answer ALL the Questions	(4 x 10 = 40)
11	K3	Find the equation $x^5 + 4x^3 - x^2 + 11 = 0$ whose roots are diminished by 3. [OR]	
12		State and prove the property I of Newton's Theorem on the sums of the power of the roots.	
13		$2x + 3y - 5 = 0$ Using inverse of matrix method solve the system of equations $x - 2y + 1 = 0$ [OR]	
14		State and establish De Gua's rule.	
15		Find a positive root of $x^3 + 24x - 50 = 0$ correct to 4 decimal places using Horner's method. [OR]	
16	K4	State and prove Wilson's Theorem.	
17		Obtain $\log 7$ to the base 10 by square roots only upto 5 decimal places. [OR]	
18		$\begin{pmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{pmatrix}$ Find the eigen values and eigen vectors of the matrix	

SECTION C – K5 & K6 (CO3)

		Answer ALL the Questions	(2 x 20 = 40)
19		Find the equation by removing the second term of the equation $x^4 + 8x^3 + x - 5 = 0$.	

20	K5	<p style="text-align: right;">[OR]</p> <p>If α, β, γ are the roots of the equation $x^3 + px^2 + qx + r = 0$, Find the equation whose roots are $\alpha^2, \beta^2, \gamma^2$.</p>
----	----	---

21	K6	<p>Diagonalise the matrix $\begin{pmatrix} 2 & -2 & 3 \\ 1 & 1 & 1 \\ 1 & 3 & -1 \end{pmatrix}$</p> <p style="text-align: right;">[OR]</p> <p>State and prove Lagrange's theorem.</p>
22		<p>Sum to infinity the series $1 + \frac{1+2}{2!} + \frac{1+2+2^2}{3!} + \frac{1+2+2^2+2^3}{4!} + \dots$</p>

\$\$\$\$\$\$\$\$\$\$\$\$